13

Theorems on Area

INTRODUCTION

We know that Geometry originated from the need of measuring land or recasting/refixing its boundaries in the process of distribution of certain land or field among different people. You may recall that the part of the plane enclosed by a simple closed curve is called a *planar region* corresponding to that figure and the magnitude (or measure) of this plane region is called the *area* of that figure. This magnitude of measure is always expressed with the help of a number (in some unit) such as 15 cm², 32 m², 3.5 hectares etc. So, we can say that the area of a simple closed plane figure is a number (in some unit) associated with the part of the plane enclosed by the figure.

In earlier classes, we have learnt some formulae for finding the areas of some different simple closed plane figures such as triangle, rectangle, square, parallelogram etc. In this chapter, we shall consolidate the knowledge about these formulae by studying some relationship between the areas of these geometric figures under the condition when they lie on the same base (or equal bases) and between the same parallel lines.

13.1 AXIOMS OF AREA

Congruence area axiom

If two figures are congruent, then the areas enclosed by these figures are equal.

Thus, if two figures A and B are congruent, then area enclosed by A = area enclosed by B.

This is known as **congruence area axiom**.

In the adjoining figure, $\triangle ABC \cong \triangle PQR$.

So, area of $\triangle ABC$ = area of $\triangle PQR$.

Note that by area of \triangle ABC we mean the area of the region enclosed by the triangle ABC.

□ Addition area axiom

If a planar region R consists of two non-overlapping planar regions R_1 and R_2 , then area of region R = area of region R_1 + area of region R_2 .

This is known as addition area axiom.

In the adjoining figure, planar regions R_1 and R_2 are nonoverlapping. If R is the total region *i.e.* the region made up of regions R_1 and R_2 , then

area of region R = area of region R_1 + area of region R_2 .

13.2 EQUAL FIGURES

Two figures are called equal if and only if they have equal area.

As two congruent figures have equal area, therefore, two congruence figures are always equal figures. However, the converse may not be true *i.e.* two equal figures may not be congruent.

For example, consider the two right triangles ABC and PQR given below:

Area of $\triangle ABC = \left(\frac{1}{2} \times 6 \times 2\right) \text{ cm}^2 = 6 \text{ cm}^2.$

Area of $\triangle PQR = \left(\frac{1}{2} \times 4 \times 3\right) \text{ cm}^2 = 6 \text{ cm}^2$.

... Area of $\triangle ABC$ = area of $\triangle PQR$

 $\Rightarrow \Delta ABC$ and ΔPQR are equal figures.

Clearly, these triangles are not congruent.

13.3 THEOREMS ON AREA

Theorem 13.1

A diagonal of a parallelogram divides it into two triangles of equal areas.

Given. ABCD is a parallelogram and AC is its one diagonal.

To prove. Area of $\triangle ABC$ = area of $\triangle ACD$.

Proof.

Statements	Reasons
In $\triangle ABC$ and $\triangle CDA$	
1. AB = DC	1. Opp. sides of gm ABCD.
2. BC = AD	2. Opp. sides of gm ABCD.
3. AC = AC	3. Common.
4. $\triangle ABC \cong \triangle CDA$	4. SSS rule of congruency.
5. Area of $\triangle ABC$ = area of $\triangle ACD$	5. Congruence area axiom.
Q.E.D.	

Theorem 13.2

Parallelograms on the same base and between the same parallel lines are equal in area.

Given. Two parallelograms ABCD and ABEF on the same base AB and between the same parallel lines AB and DE.

To prove. Area of || gm ABCD = area of || gm ABEF.

THEOREMS ON AREA

D

C

B

Proof.

Statements	Reasons
In $\triangle ADF$ and $\triangle BCE$	
1. $\angle ADF = \angle BCE$	1. Corres. \angle s, AD BC and DE is a transversal.
2. ∠AFD = ∠BEC	2. Corres. \angle s, AF BE and DE is a transversal.
3. AD = BC	3. Opp. sides of gm ABCD.
4. $\triangle ADF \cong \triangle BCE$	4. AAS rule of congruency.
5. Area of $\triangle ADF$ = area of $\triangle BCE$	5. Congruent figures have equal area.
6. Area of \triangle ADF + area of quad. ABCF = area of \triangle BCF + area of quad. ABCF	6. Adding same area on both sides.
7. Area of gm ABCD	7. Addition area axiom.
= area of gm ABEF	

Corollary 1. *A parallelogram and a rectangle on the same base and between the same parallel lines are equal in area.*

Proof. Let a parallelogram ABCD and a rectangle ABEF be on the same base AB and between the same parallel lines AB and FC (as shown in the adjoining figure).

We want to prove that area of \parallel gm ABCD = area of rect. ABEF.

Since a rectangle is also a parallelogram, therefore,

area of || gm ABCD = area of rect. ABEF (Theorem 13.2).

Hence, a parallelogram and a rectangle on the same base and between the same parallel lines are equal in area.

Corollary 2. *Area of a parallelogram = base × height.* **Proof.** By corollary 1, we have area of parallelogram ABCD = area of rectangle ABEF

Also area of rectangle $ABEF = AB \times BE$

From (*i*) and (*ii*), we get

area of parallelogram $ABCD = AB \times BE = base \times height.$

Hence, the area of a parallelogram = base × height.

Corollary 3. Parallelograms with equal bases and between the same parallels are equal in area.

Proof. Let ABCD and EFGH be two parallelograms with equal bases *i.e.* AB = EF and between the same parallel lines EB and HC.

From B, draw BM \perp DC and from E, draw EN \perp HG, then BM = EN

(∵ EBMN is a rectangle (why?)), so opp. sides are equal *i.e.* BM = EN)

By corollary 2,

256

area of parallelogram ABCD = base \times height = AB \times BM

= EF \times EN

= area of parallelogram EFGH.

Hence, parallelograms with equal bases and between the same parallel lines are equal in area.

...(*i*)

...(*ii*)

H N D G M C E A F B

(see figure of corollary 1)

Converse of theorem 13.2

The converse of the above theorem 13.2 is also true. In fact, we have: **Theorem 13.3**

Parallelograms on the same base and having equal areas lie between same parallel lines.

Given. Two parallelograms ABCD and ABEF on the same base AB and area of \parallel gm ABCD = area of \parallel gm ABEF.

To prove. AB || FC.

Construction. From D, draw DM \perp AB and from E, draw EN \perp AB.

Statements	Reasons
1. Area of \parallel gm ABCD = AB × DM	1. Area of a \parallel gm = base × height.
2. Area of \parallel gm ABEF = AB × EN	2. Area of a \parallel gm = base × height.
3. $AB \times DM = AB \times EN$ $\Rightarrow DM = EN$	3. Area of gm ABCD = area of gm ABEF (given)
4. DM EN	4. DM and EN are both perpendicular to the same line AB.
5. DMNE is a parallelogram.	5. Two sides DM and EN of quad. DMNE are equal and parallel.
6. MN DE <i>i.e.</i> AB FC	6. By definition of a gm.

Corollary 1. Parallelograms on equal bases and having equal areas have equal corresponding altitudes.

(In the above proof of the theorem, we obtained DM = EN, so \parallel gm ABCD and \parallel gm ABEF have equal corresponding altitudes.)

Corollary 2. Parallelograms on equal bases and having equal areas lie between same parallel lines.

Theorem 13.4

Area of a triangle is half that of a parallelogram on the same base and between the same parallel lines.

Given. A triangle ABE and a parallelogram ABCD on the same base AB and between the same parallel lines AB and DC.

To prove. Area of $\triangle ABE = \frac{1}{2}$ area of \parallel gm ABCD.

Construction. Through B, draw BF \parallel AE to meet DC (produced) at F.

D

Μ

А

F

Е

N B

C

THEOREMS ON AREA

Proof.

Statements	Reasons
1. ABFE is a parallelogram	1. By construction.
2. Area of $\triangle ABE =$ $\frac{1}{2}$ area of gm ABFE	2. BE is a diagonal of gm ABFE, and a diagonal divides it into two triangles of equal areas.
3. Area of gm ABCD = area of gm ABFE	3. Parallelograms on the same base and between the same parallels are equal in area.
4. Area of $\triangle ABE =$	4. From 2 and 3.
$\frac{1}{2}$ area of gm ABCD	

Corollary 1. *Area of a triangle* =
$$\frac{1}{2}$$
 base × *height*

Proof. Let ABC be a triangle with base BC and AN \perp BC, then height of $\triangle ABC = AN$. Through A and C draw lines parallel to BC and BA to meet at D, then ABCD is a parallelogram.

Thus, $\triangle ABC$ and parallelogram ABCD are on the same base BC and between same parallel lines BC and AD.

Area of
$$\triangle ABC = \frac{1}{2}$$
 area of parallelogram ABCD (Theorem 13.4)

$$= \frac{1}{2} BC \times AN$$
 (area of || gm = base × height)

$$= \frac{1}{2} base \times height.$$

Corollary 2. A median of a triangle divides it into two triangles of equal areas.

Proof. Let ABC be any triangle and AD be one of its medians (shown in the adjoining figure).

We need to show that area of $\triangle ABD = \text{area of } \triangle ACD$.

From A, draw AN \perp BC.

Now, area ($\triangle ABD$) = $\frac{1}{2}$ base × corresponding height $=\frac{1}{2}$ BD × AN $=\frac{1}{2}$ DC × AN (:: D is mid-point of BC, so BD = DC)

= area of $\triangle ACD$.

Hence, a median of a triangle divides it into two triangles of equal area.

Corollary 3. Area of a trapezium = $\frac{1}{2}$ (sum of parallel sides) × height.

Proof. Let ABCD be a trapezium in which AB || DC. Join AC. From C, draw CN \perp AB and from A, draw AM \perp CD (produced).

Then

258

Area of trapezium ABCD = area of \triangle ABC + area of \triangle ACD)

$$= \frac{1}{2} AB \times CN + \frac{1}{2} DC \times AM$$

D

М

В

Ν D С

B

D

Δ

Ν в

$$= \frac{1}{2} (AB \times h + DC \times h) = \frac{1}{2} (AB + DC) \times h$$
$$= \frac{1}{2} (sum of parallel sides) \times height.$$

∠D

А F Ε 1

Theorem 13.5

Triangles on the same base (or equal bases) and between the same parallel lines are equal in area.

Given. Two triangles ABC and BCD on the same BC and between the same parallel lines BC and *l*.

To prove. Area of $\triangle ABC = \text{area of } \triangle BCD$.

Construction. Through C, draw CE || BA and CF \parallel BD to meet line *l* at E and F respectively.

n (

11001.	
Statements	Reasons
1. ABCE is a parallelogram.	1. BC AE (given), CE BA (Const.)
2. BCFD is a parallelogram	2. BC DF (given), CF BD (Const.)
3. Area of \parallel gm ABCE = area of \parallel gm BCFD.	3. Parallelogram on same base and between same parallel lines.
4. Area of $\triangle ABC = \frac{1}{2}$ area of gm ABCE	4. Area of a Δ is half that of a \parallel gm on the same base and between same parallels.
5. Area of $\triangle BCD = \frac{1}{2}$ area of gm BCFD	5. Area of a Δ is half that of a \parallel gm on the same base and between same parallels.
6. Area of $\triangle ABC = \text{area of } \triangle BCD$	6. From 3, 4 and 5.

Converse of theorem 13.5

The converse of the above theorem 13.5 is also true. In fact, we have:

Theorem 13.6

Triangles on the same base (or equal bases) and having equal areas lie between the same parallel lines. D

Given. Two triangles ABC and ABD on the same base AB, and area of $\triangle ABC = \text{area of } \triangle ABD$.

To prove. CD || AB.

Construction. From C and D, draw perpendiculars CM and DN on AB respectively.

Р

Proof.	A M N
Statements	Reasons
1. Area of $\triangle ABC = \frac{1}{2} AB \times CM$	1. Area of a triangle = $\frac{1}{2}$ base × height.
2. Area of $\triangle ABD = \frac{1}{2} AB \times DN$	2. Same as above.
3. $\frac{1}{2}$ AB × CM = $\frac{1}{2}$ AB × DN	3. Area of $\triangle ABC$ = area of $\triangle ABD$ (given)
4. CM = DN	4. From 3, cancelling $\frac{1}{2}$ AB.

5. CM DN	5. CM and DN are both perpendiculars to the same line AB.
6. CMND is a parallelogram.	6. Two sides CM and DN of quad. CMND are equal and parallel.
7. CD MN <i>i.e.</i> CD AB	7. By definition of a gm.

Corollary 1. Triangles on the same base (or equal bases) and having equal areas have equal corresponding altitudes.

(In the above proof of the theorem, we obtained CM = DN. So, \triangle ABC and \triangle ABD have equal corresponding altitudes.)

Corollary 2. *If two triangles lie between the same parallels (i.e. have equal altitudes), then the ratio of their areas equals the ratio of their bases.*

Corollary 3. *If two triangles have equal bases, then the ratio of their areas equals the ratio of their altitudes.*

Illustrative Examples

Example 1. *P* and *Q* are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that area of $\Delta APB = area$ of ΔBQC .

Solution. Given a parallelogram ABCD, and P and Q are points lying on the sides DC and AD respectively as shown in the adjoining figure.

As $\triangle APB$ and \parallel gm ABCD are on the same base and between the same parallels AB and DC,

area of
$$\triangle APB = \frac{1}{2}$$
 area of $\parallel \text{gm} ABCD$...(*i*)

Also, as ΔBQC and \parallel gm ABCD are on the same BC and between the same parallels AD and BC,

area of
$$\triangle BQC = \frac{1}{2}$$
 area of $\parallel \text{gm ABCD}$

From (*i*) and (*ii*), we get

area of $\triangle APB = \text{area of } \triangle BQC$.

Example 2. In the adjoining figure, ABCD is a rectangle with sides AB = 8 cm and AD = 5 cm. Compute

- (i) area of parallelogram ABEF
- (ii) area of ΔEFG .

260

Solution. (*i*) Area of || gm ABEF

= area of rectangle ABCD

(on the same base AB and between the same parallels AB and DE)

$$= (8 \times 5) \text{ cm}^2 = 40 \text{ cm}^2.$$

(*ii*) Area of
$$\triangle EFG = \frac{1}{2}$$
 area of \parallel gm ABEF

(on the same base FE and between the same parallels FE and AG)

$$= \left(\frac{1}{2} \times 40\right) \operatorname{cm}^2 = 20 \operatorname{cm}^2.$$

...(*ii*)

Example 3. *A point E is taken on the side BC of a parallelogram ABCD. AE and DC are produced to meet at F. Prove that*

...(*i*)

...(*ii*)

area of $\triangle ADF$ = area of quad. ABFC.

Solution. Join AC and BF.

As triangles ACF and BCF have same base CF and are between the same parallels AB and CF (\because AB || DC),

area of $\triangle ACF$ = area of $\triangle BCF$

As diagonal AC divides $\parallel \mbox{gm}$ ABCD into two triangles of equal area,

area of ΔDAC = area of ΔABC

On adding (i) and (ii), we get

area of $\triangle ACF$ + area of $\triangle DAC$ = area of $\triangle BCF$ + area of $\triangle ABC$

 \Rightarrow area of \triangle ADF = area of quad. ABFC.

Example 4. The diagonals of a parallelogram ABCD intersect at O. A straight line through O meets AB at P and the opposite side CD at Q. Prove that area of quad. $APQD = \frac{1}{2}$ area of || gm ABCD.

Proof.

Statements	Reasons
1. Area of $\triangle ACD = \frac{1}{2}$ area of \parallel gm ABCD	 Diagonal divides a ∥gm into two ∆s of equal area.
In $\triangle OAP$ and $\triangle OCQ$	
2. $\angle OAP = \angle OCQ$	2. Alt.∠s.
3. $\angle AOP = \angle COQ$	3. Vert. opp. ∠s.
4. AO = OC	4. Diagonals bisect each other.
5. $\triangle OAP \cong \triangle OCQ$	5. ASA rule of congruency.
6. Area of $\triangle OAP$ = area of $\triangle OCQ$	6. Congruence area axiom.
7. Area of $\triangle OAP$ + area of quad. AOQD = area of $\triangle OCQ$ + area of quad. AOQD	7. Adding same area on both sides.
8. Area of quad. APQD = area of \triangle ACD	8. Addition area axiom.
9. Area of quad. APQD	9. From 8 and 1.
$=\frac{1}{2}$ area of \parallel gm ABCD	
Q.E.D.	

Example 5. *ABCD is a trapezium with AB* \parallel *DC, and diagonals AC and BD meet at O. Prove that area of* $\Delta DAO = area$ *of* ΔOBC .

Proof.

Statements	Reasons
1. AB DC	1. Given.
2. Area of $\triangle ABD$ = area of $\triangle ABC$	2. ∆s on the same base AB and between the same parallels AB and CD are equal in area.
3. Area of $\triangle DAO$ + area of $\triangle OAB$ = area of $\triangle OBC$ + area of $\triangle OAB$	3. Addition area axiom.
4. Area of $\triangle DAO$ = area of $\triangle OBC$ Q.E.D.	4. Subtracting same area from both sides.

Example 6. The diagonals AC and BD of a quadrilateral ABCD intersect at O. If OB = OD, prove that the triangles ABC and ACD are equal in area.

Proof.

Statements	Reasons
1. AO is median of $\triangle ABD$	1. OB = OD (given).
2. Area of $\triangle OAB$ = area of $\triangle OAD$	2. Median divides a Δ into two Δ s of equal area.
3. CO is median of \triangle CBD	3. $OB = OD$ (given)
4. Area of $\triangle OBC$ = area of $\triangle OCD$	4. Median divides a Δ into two Δ s of equal area.
5. Area of $\triangle OAB$ + area of $\triangle OBC$ = area of $\triangle OAD$ + area of $\triangle OCD$	5. Adding 2 and 4
6. Area of $\triangle ABC$ = area of $\triangle ACD$ Q.E.D.	6. Addition area axiom.

Example 7. In quadrilateral ABCD, M is mid-point of the diagonal AC. Prove that area of quad. ABMD = area of quad. DMBC.

Proof.

Statements	Reasons
1. BM is median of \triangle BCA	1. M is mid-point of AC (given).
2. Area of $\triangle ABM$ = area of $\triangle MBC$	2. Median divides a Δ into two Δ s of equal area.
3. DM is median of ΔDAC	3. M is mid-point of AC (given).
4. Area of $\Delta DAM = area of \Delta DMC$	4. Median divides a triangle into two Δs of equal area.
5. Area of $\triangle ABM$ + area of $\triangle DAM$ = area of $\triangle MBC$ + area of $\triangle DMC$	5. Adding 2 and 4.
6. Area of quad. ABMD = area of quad. DMBC Q.E.D.	6. Addition area axiom.

Example 8. In the adjoining figure, D is mid-point of AB and P is any point on side BC of $\triangle ABC$. If CQ || PD meets AB in Q, then prove that area of $\triangle BPQ = \frac{1}{2}$ area of $\triangle ABC$.

Solution. Join CD.

Triangles DPQ and DPC are on the same base PD and between same parallels CQ and PD,

 $\therefore \quad \text{area of } \Delta PDQ = \text{area of } \Delta DPC \qquad \dots (i)$

As D is mid-point of AB, so CD is a median of \triangle ABC. Since a median divides a triangle into two triangles of equal area,

area of
$$\triangle BCD = \frac{1}{2}$$
 area of $\triangle ABC$
 \Rightarrow area of $\triangle BPD$ + area of $\triangle DPC = \frac{1}{2}$ area of $\triangle ABC$
 \Rightarrow area of $\triangle BPD$ + area of $\triangle DPQ = \frac{1}{2}$ area of $\triangle ABC$

$$\Rightarrow$$
 area of $\triangle BPQ = \frac{1}{2}$ area of $\triangle ABC$.

Example 9. In the adjoining figure, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove that area of ABCDE = area of $\triangle APQ$.

Solution. \triangle PCA and \triangle BCA are on the same base CA and between same parallels BP || AC.

 \therefore area of $\triangle BCA$ = area of $\triangle PCA$

 ΔEAD and ΔQAD are on the same base AD and between same parallels EQ || AD,

...(i)

 \therefore area of ΔEAD = area of ΔQAD

Also, area of $\triangle ACD$ = area of $\triangle ACD$

On adding (i), (iii) and (ii), we get

area of $\triangle BCA$ + area of $\triangle ACD$ + area of $\triangle EAD$

 \Rightarrow area of ABCDE = area of \triangle APQ.

Example 10. The diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that area of $\triangle OAD =$ area of $\triangle OBC$. Prove that ABCD is a trapezium.

Solution. Draw DM \perp AB and CN \perp AB.

As DM and CN are both perpendiculars to AB, therefore, DM \parallel CN.

Given area of $\triangle OAD$ = area of $\triangle OBC$

 $\Rightarrow \quad \text{area of } \Delta \text{OAD} + \text{area of } \Delta \text{OAB}$

= area of $\triangle OBC$ + area of $\triangle OAB$

 \Rightarrow area of $\triangle ABD$ = area of $\triangle ABC$

$$\Rightarrow \quad \frac{1}{2}AB \times DM = \frac{1}{2}AB \times CN$$

 \Rightarrow DM = CN.

Thus $DM \parallel CN$ and DM = CN, therefore, DMNC is a parallelogram

 \Rightarrow DC || MN *i.e.* DC || AB.

Hence, ABCD is a trapezium.

(adding same area on both sides)

= area of $\triangle PCA$ + area of $\triangle ACD$ + area of $\triangle QAD$

D

R

R

...(*ii*) ...(*iii*)

Example 11. Prove that area of a rhombus $= \frac{1}{2} \times product of diagonals.$ Solution. Let ABCD be a rhombus, and let its diagonals intersect at O. Since the diagonals of a rhombus cut at right angles, OB \perp AC and OD \perp AC. As area of a triangle $= \frac{1}{2}$ base \times height, \therefore area of $\triangle ABC = \frac{1}{2}$ AC \times OB ...(*i*) and area of $\triangle ACD = \frac{1}{2}$ AC \times OD ...(*ii*) On adding (*i*) and (*ii*), we get area of $\triangle ABC$ + area of $\triangle ACD = \frac{1}{2}$ AC \times OB + $\frac{1}{2}$ AC \times OD \Rightarrow area of rhombus ABCD = $\frac{1}{2}$ AC \times (OB + OD) $= \frac{1}{2}$ AC \times BD $= \frac{1}{2} \times product of diagonals.$

Example 12. *ABCD is a trapezium with AB* \parallel *DC. A line parallel to AC intersects AB at X and BC at Y. Prove that: area of* $\triangle ADX = area$ *of* $\triangle ACY$.

...(*i*)

Solution. Join CX.

As triangles ADX and ACX have same base AX and are between the same parallels (AB \parallel DC given, so, AX \parallel DC),

 \therefore area of $\triangle ADX$ = area of $\triangle ACX$

As triangles ACY and ACX have same base AC and are between the same parallels (XY \parallel AC given),

 \therefore area of $\triangle ACY$ = area of $\triangle ACX$

From (i) and (ii), we get

c II

264

area of $\triangle ADX$ = area of $\triangle ACY$.

Example 13. *XY is a line parallel to side BC of a triangle ABC. If BE* \parallel *CA and FC* \parallel *AB meet XY at E and F respectively, show that area of* \triangle *ABE* = *area of* \triangle *ACF.*

Solution. As \triangle ABE and \parallel gm EBCY have the same base BE and are between the same parallels BE \parallel CA (given),

 $\therefore \qquad \text{area of } \Delta ABE = \frac{1}{2} \text{ area of } || \text{ gm EBCY } \dots(i)$

As \triangle ACF and \parallel gm XBCF have the same base CF and are between the same parallels FC \parallel AB (given),

$$\therefore \qquad \text{area of } \Delta ACF = \frac{1}{2} \text{ area of } || \text{ gm XBCF} \qquad \dots (ii)$$

<u>с н</u>

But \parallel gm EBCY and \parallel gm XBCF have the same base BC and are between the same parallels (XY \parallel BC given),

$$\therefore \quad \text{area of } \| \text{ gm EBCY} = \text{ area of } \| \text{ gm XBCF}$$

$$\Rightarrow \quad \frac{1}{2} \text{ area of } \| \text{ gm EBCY} = \frac{1}{2} \text{ area of } \| \text{ gm XBCF}$$

$$\Rightarrow \quad \text{ area of } \Delta \text{ABE} = \text{ area of } \Delta \text{ACF}$$

(using (i) and (ii))

D

С

Example 14. In the adjoining figure, the side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed. Show that

area of || gm ABCD = area of || gm PBQR. **Solution.** Join AC and PQ. As AC is a diagonal of || gm ABCD, area of || gm ABCD = 2 area of $\triangle ABC$ As PQ is a diagonal of || gm PBQR, area of || gm PBQR = 2 area of $\triangle PBQ$ Now, triangles CAQ and PAQ have the same base AQ and are between the same parallels AO || CP,

\sim 1 \sim 1			
:.	area of $\Delta CAQ = area of \Delta PAQ$		
\Rightarrow	area of ΔCAQ – area of ΔBAQ = area of ΔPAQ – area of ΔBAQ		
	(subtracting same area from both sides)		
\Rightarrow	area of $\triangle ABC = \text{area of } \triangle PBQ$		
\Rightarrow	2 area of $\triangle ABC = 2$ area of $\triangle PBQ$		
\Rightarrow	area of gm ABCD = area of gm PBQR		

 $A \qquad B \qquad P$ $Q \qquad R$ $D \qquad C$ $A \qquad B \qquad P$ $Q \qquad R$

D

(using (*i*) and (*ii*))

Example 15. *In the adjoining figure, PQRS and PXYZ are two parallelograms of equal area. Prove that SX is parallel to YR.*

Solution. Join XR, SY.

Given area of \parallel gm PQSR = area of \parallel gm PXYZ.

Subtract area of || gm PSOX from both sides.

 \therefore Area of || gm XORQ = area of || gm SZYO

 \Rightarrow area of \triangle XOR = area of \triangle SYO

(because diagonal divides a || gm into two equal areas)

...(*i*)

...(*ii*)

Adding area of $\triangle OYR$ to both sides, we get

area of ΔXYR = area of ΔSYR .

Also the Δs XYR and SYR have the same base YR, therefore, these lie between the same parallels

 \Rightarrow SX is parallel to YR.

Example 16. *E* and *F* are mid-points of the sides AB and AC respectively of a triangle ABC. If BF and CE meet at O, prove that area of $\triangle OBC = area of quad. AEOF.$

Solution. Join EF.

As E and F are mid-points of AB and AC respectively, EF \parallel BC.

 \therefore Area of $\triangle EBC$ = area of $\triangle FBC$.

(Triangles on the same base BC and between same parallels)

 \Rightarrow area of \triangle EBC – area of \triangle OBC

= area of Δ FBC – area of Δ OBC

 \Rightarrow area of $\triangle BOE$ = area of $\triangle COF$

As F is mid-point of AC, area of \triangle FBC = area of \triangle ABF

(\because A median divides a triangle into two triangles of equal area).

...(*i*)

- $\Rightarrow \quad \text{area of } \Delta FBC \text{area of } \Delta COF = \text{area of } \Delta ABF \text{area of } \Delta BOE$
- \Rightarrow area of $\triangle OBC$ = area of quad. AEOF

265

[using (*i*)]

(from figure)

Example 17. *In the adjoining figure, ABCD, DCFE and ABFE are parallelograms. Show that area of* $\triangle ADE = area$ *of* $\triangle BCF$.

Solution. As ABCD is a parallelogram,

	AD = BC (opp. sides	of a gm)	\triangleleft		
Similar	ly, $DE = CF$ and $AE = BF$.	E	F		
In \triangle ADE and \triangle BCF,					
	AD = BC, DE = CF and AE	= BF			
<i>.</i> .	$\Delta ADE \cong \Delta BCF$	(by SSS rule of congru	iency)		
	area of $\triangle ADE = area of \triangle BCF$	(congruent figures have equal a	areas)		

Example 18. Triangles ABC and DBC are on the same base BC with A, D on opposite sides of BC. If area of $\triangle ABC = area$ of $\triangle DBC$, prove that BC bisects AD.

Solution. Let BC and AD intersect at O.

Draw AM \perp BC and DN \perp BC.

Given area of $\triangle ABC$ = area of $\triangle DBC$

$$\Rightarrow \quad \frac{1}{2} BC \times AM = \frac{1}{2} BC \times DN$$

$$\Rightarrow$$
 AM = DN.

In \triangle AMO and \triangle DNO,

 $\angle AOM = \angle DON$ $\angle AMO = \angle DNO$ AM = DN

$$\therefore \quad \Delta AMO \cong \Delta DNO$$

$$\therefore$$
 AO = DO

Hence, BC bisects AD.

Example 19. In the adjoining figure, ABCD is a parallelogram and BC is produced to a point Q such that CQ = AD. If AQ intersects DC at P, show that area of $\Delta BPC = area$ of ΔDPQ .

Solution. Join AC.

As triangles BPC and APC have same base PC and are between the same parallels (AB || DC *i.e.* AB || PC),

 $\therefore \quad \text{area of } \Delta BPC = \text{area of } \Delta APC \qquad \dots(i)$ In quad. ADQC, AD || CQ $(\because AD || BC, \text{ opp. sides of } || \text{ gm ABCD})$ $AD = CQ \qquad (given)$ $\therefore \quad ADQC \text{ is a parallelogram, so its diagonals } AQ \text{ and}$ DC bisect each other *i.e.* DP = PC and AP = PQ.

In \triangle APC and \triangle QPD,

PC = DP AP = PQ ∠APC = ∠QPD (vert. opp. ∠s) △APC ≅ △QPD ∴ area of △APC = area of △DPQ ...(*ii*) From (*i*) and (*ii*), we get area of △BPC = area of △DPQ.

В

(vert. opp. ∠s) (each angle = 90°) (proved above) (AAS rule of congruency) (c.p.c.t.)

Example 20. In the adjoining figure, ABCD is a parallelogram. D *P* is mid-point of *AB* and *CP* meets the diagonal *BD* at *Q*. If area of $\Delta PBQ = 10 \ cm^2$, calculate (i) PQ:QC(*ii*) area of $\triangle PBC$ (iii) area of parallelogram ABCD. **Solution.** (*i*) Since P is mid-point of AB, PB = $\frac{1}{2}$ AB. But AB = DC (:: ABCD is a || gm) \Rightarrow PB = $\frac{1}{2}$ DC ...(1) In $\triangle PBQ$ and $\triangle CDQ$, $\angle PQB = \angle DQC$ (vert. opp. $\angle s$) and $\angle PBQ = \angle QDC$ (alt. $\angle s$) $\Delta PBQ \sim \Delta CDQ$ \Rightarrow $\therefore \qquad \frac{PQ}{QC} = \frac{PB}{DC} = \frac{1}{2}$ (using (1)) \Rightarrow PQ:QC = 1:2. (*ii*) $PQ: QC = 1:2 \implies PQ: PC = 1:3$...(2) Since the bases CP, QP of Δ s PBC, PBQ lie along the same line, and these triangles have equal heights, therefore, area of $\triangle PBC = 3 \times \text{area of } \triangle PBQ = (3 \times 10) \text{ cm}^2 = 30 \text{ cm}^2$. \Rightarrow (*iii*) Area of $\triangle ABC = 2 \times \text{area of } \triangle PBC$ (:: median of a triangle divides it into two triangles of equal areas)

Area of II

reas)

Example 21. ABC is a triangle whose area is 50 cm². E and F are mid-points of the sides AB and AC respectively. Prove that EBCF is a trapezium. Also find its area.

Solution. Since E and F are mid-points of the sides AB and AC respectively,

EF || BC and EF =
$$\frac{1}{2}$$
 BC.
As EF || BC, EBCF is a trapezium.
From A, draw AM ⊥ BC.
Let AM meet EF at N.
Since EF || BC, ∠ENA = ∠BMN.
But ∠BMN = 90° (∵ AM ⊥ BC)
so ∠ENA = 90° *i.e.* AN ⊥ EF.
Also, as E is mid-point of AB and EN || BM, N is mid-point of AM.
Now, area of $\triangle AEF = \frac{1}{2} EF \times AN = \frac{1}{2} (\frac{1}{2} BC \times \frac{1}{2} AM)$
 $= \frac{1}{4} (\frac{1}{2} BC \times AM) = \frac{1}{4} (area of \triangle ABC)$
 $= \frac{1}{4} (50 \text{ cm}^2) = 12.5 \text{ cm}^2.$
∴ Area of trapezium EBCF = area of $\triangle ABC$ – area of $\triangle AEF$

 $= 50 \text{ cm}^2 - 12.5 \text{ cm}^2 = 37.5 \text{ cm}^2$

$$\frac{\text{area of } \Delta PBC}{\text{area of } \Delta PBQ} = \frac{PC}{PQ} = \frac{3}{1}$$
(using (2))

$$= (2 \times 30) \text{ cm}^2 = 60 \text{ cm}^2.$$

(: diagonal divides a || gm into two triangles of equal at
=
$$(2 \times 60)$$
 cm² = 120 cm².

267

С

Example 22. Prove that the area of the quadrilateral formed by joining the mid-points of the adjacent sides of a quadrilateral is half the area of the given quadrilateral.

Given. A quadrilateral ABCD, and PQRS is the quadrilateral formed by joining mid-points of the sides AB, BC, CD and DA respectively.

To prove. Area of quad. PQRS = $\frac{1}{2}$ area of quad. ABCD.

Construction. Join AC and AR.

Proof.

Statements	Reasons
1. Area of \triangle ARD = $\frac{1}{2}$ area of \triangle ACD	1. Median divides a triangle into two triangles of equal area.
2. Area of \triangle SRD = $\frac{1}{2}$ area of \triangle ARD	2. Same as in 1.
3. Area of \triangle SRD = $\frac{1}{4}$ area of \triangle ACD	3. From 1 and 2.
4. Area of $\triangle PBQ = \frac{1}{4}$ area of $\triangle ABC$	4. As in 3.
5. Area of \triangle SRD + area of \triangle PBQ	5. Adding 3 and 4.
$= \frac{1}{4} (area of \Delta ACD + area of \Delta ABC)$	
6. Area of \triangle SRD + area of \triangle PBQ	6. Addition area axiom.
$=\frac{1}{4}$ area of quad. ABCD	
7. Area of $\triangle APS$ + area of $\triangle QCR$	7. Same as in 6.
$=\frac{1}{4}$ area of quad. ABCD	
8. Area of $\triangle APS$ + area of $\triangle PBQ$ + area of $\triangle QCR$	8. Adding 6 and 7.
+ area of \triangle SRD = $\frac{1}{2}$ area of quad. ABCD	
9. Area of $\triangle APS$ + area of $\triangle PBQ$ + area of $\triangle QCR$ + area of $\triangle SRD$ + area of quad. PQRS = area of quad. ABCD	9. Addition area axiom.
10. Area of quad. PQRS =	10. Subtracting 8 from 9.
$\frac{1}{2}$ area of quad. ABCD	
Q.E.D.	

Exercise 13

- **1.** Prove that the line segment joining the mid-points of a pair of opposite sides of a parallelogram divides it into two equal parallelograms.
- 2. Prove that the diagonals of a parallelogram divide it into four triangles of equal area.
- **3.** (*a*) In the figure (1) given below, AD is median of ΔABC and P is any point on AD. Prove that
 - (*i*) area of $\triangle PBD$ = area of $\triangle PDC$
- (*ii*) area of $\triangle ABP$ = area of $\triangle ACP$.

(*b*) In the figure (2) given below, DE || BC. Prove that (*i*) area of \triangle ACD = area of \triangle ABE (*ii*) area of \triangle OBD = area of \triangle OCE.

fint: (*b*) (*i*) Area of \triangle DEC = area of \triangle DEB, add area of \triangle ADE to both sides.

- **4.** (*a*) In the figure (1) given below, ABCD is a parallelogram and P is any point in BC. Prove that, area of \triangle ABP + area of \triangle DPC = area of \triangle APD.
 - (*b*) In the figure (2) given below, O is any point inside a parallelogram ABCD. Prove that

(*i*) area of $\triangle OAB$ + area of $\triangle OCD = \frac{1}{2}$ area of \parallel gm ABCD.

(*ii*) area of $\triangle OBC$ + area of $\triangle OAD = \frac{1}{2}$ area of \parallel gm ABCD.

int: (b) (i) Through O, draw a straight line parallel to AB.

- **5.** If E, F, G and H are mid-points of the sides AB, BC, CD and DA respectively of a parallelogram ABCD, prove that area of quad. EFGH = $\frac{1}{2}$ area of ||gm ABCD.
 - int: Join HF. AH = $\frac{1}{2}$ AD and BF = $\frac{1}{2}$ BC ⇒ AH = BF and AH || BF, so ABFH is a ||gm. ∴ Area of Δ EFH = $\frac{1}{2}$ area of || gm ABFH.
- (*a*) In the figure (1) given below, ABCD is a parallelogram. P, Q are any two points on the sides AB and BC respectively. Prove that area of ΔCPD = area of ΔAQD.
 - (*b*) In the figure (2) given below, PQRS and ABRS are parallelograms and X is any point on the side BR. Show that

area of $\triangle AXS = \frac{1}{2}$ area of || gm PQRS.

