

## INTRODUCTION

We know that Geometry originated from the need of measuring land or recasting/refixing its boundaries in the process of distribution of certain land or field among different people. You may recall that the part of the plane enclosed by a simple closed curve is called a planar region corresponding to that figure and the magnitude (or measure) of this plane region is called the area of that figure. This magnitude of measure is always expressed with the help of a number (in some unit) such as $15 \mathrm{~cm}^{2}, 32 \mathrm{~m}^{2}, 3.5$ hectares etc. So, we can say that the area of a simple closed plane figure is a number (in some unit) associated with the part of the plane enclosed by the figure.

In earlier classes, we have learnt some formulae for finding the areas of some different simple closed plane figures such as triangle, rectangle, square, parallelogram etc. In this chapter, we shall consolidate the knowledge about these formulae by studying some relationship between the areas of these geometric figures under the condition when they lie on the same base (or equal bases) and between the same parallel lines.

### 13.1 AXIOMS OF AREA

$\square$ Congruence area axiom

## If two figures are congruent, then the areas enclosed by these figures are equal.

Thus, if two figures A and B are congruent, then area enclosed by A = area enclosed by B.
This is known as congruence area axiom.
In the adjoining figure, $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$.


So, area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{PQR}$.
Note that by area of $\triangle \mathrm{ABC}$ we mean the area of the region enclosed by the triangle $A B C$.

## - Addition area axiom

If a planar region $R$ consists of two non-overlapping planar regions $R_{1}$ and $R_{2}$, then area of region $R=$ area of region $R_{1}+$ area of region $R_{2}$.
This is known as addition area axiom.
In the adjoining figure, planar regions $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ are nonoverlapping. If R is the total region i.e. the region made up of regions $R_{1}$ and $R_{2}$, then
area of region $R=$ area of region $R_{1}+$ area of region $R_{2}$.


### 13.2 EQUAL FIGURES

## Two figures are called equal if and only if they have equal area.

As two congruent figures have equal area, therefore, two congruence figures are always equal figures. However, the converse may not be true i.e. two equal figures may not be congruent.
For example, consider the two right triangles ABC and PQR given below:


Area of $\triangle \mathrm{ABC}=\left(\frac{1}{2} \times 6 \times 2\right) \mathrm{cm}^{2}=6 \mathrm{~cm}^{2}$.
Area of $\triangle \mathrm{PQR}=\left(\frac{1}{2} \times 4 \times 3\right) \mathrm{cm}^{2}=6 \mathrm{~cm}^{2}$.
$\therefore \quad$ Area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{PQR}$
$\Rightarrow \quad \triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are equal figures.
Clearly, these triangles are not congruent.

### 13.3 THEOREMS ON AREA

Theorem 13.1
A diagonal of a parallelogram divides it into two triangles of equal areas.

Given. ABCD is a parallelogram and AC is its one diagonal.

To prove. Area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{ACD}$.
Proof.


| Statements | Reasons |
| :--- | :--- |
| In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$ |  |
| 1. $\mathrm{AB}=\mathrm{DC}$ | 1. Opp. sides of $\\|$ gm ABCD. |
| 2. $\mathrm{BC}=\mathrm{AD}$ | 2. Opp. sides of $\\|$ gm ABCD. |
| 3. $\mathrm{AC}=\mathrm{AC}$ | 3. Common. |
| 4. $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$ | 4. SSS rule of congruency. |
| 5. Area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{ACD}$ |  |
| Q.E.D. | 5. Congruence area axiom. |

## Theorem 13.2

Parallelograms on the same base and between the same parallel lines are equal in area.
Given. Two parallelograms ABCD and ABEF on the same base AB and between the same parallel lines AB and DE .

To prove. Area of \| gm ABCD = area of \| gm ABEF.


## Proof.

| Statements | Reasons |
| :---: | :---: |
| In $\triangle \mathrm{ADF}$ and $\triangle \mathrm{BCE}$ |  |
| 1. $\angle \mathrm{ADF}=\angle \mathrm{BCE}$ | 1. Corres. $\angle \mathrm{s}, \mathrm{AD} \\| \mathrm{BC}$ and DE is a transversal. |
| 2. $\angle \mathrm{AFD}=\angle \mathrm{BEC}$ | 2. Corres. $\angle \mathrm{s}, \mathrm{AF} \\| \mathrm{BE}$ and DE is a transversal. |
| 3. $\mathrm{AD}=\mathrm{BC}$ | 3. Opp. sides of \|| gm ABCD. |
| 4. $\triangle \mathrm{ADF} \cong \triangle \mathrm{BCE}$ | 4. AAS rule of congruency. |
| 5. Area of $\triangle \mathrm{ADF}=$ area of $\triangle \mathrm{BCE}$ | 5. Congruent figures have equal area. |
| 6. Area of $\triangle \mathrm{ADF}+$ area of quad. $\mathrm{ABCF}=$ area of $\triangle B C F+$ area of quad. $A B C F$ | 6. Adding same area on both sides. |
| $\begin{aligned} \text { 7. Area of } \\| \text { gm ABCD } & \\ & =\text { area of } \\| \text { gm ABEF } \end{aligned}$ | 7. Addition area axiom. |

Corollary 1. A parallelogram and a rectangle on the same base and between the same parallel lines are equal in area.

Proof. Let a parallelogram ABCD and a rectangle ABEF be on the same base $A B$ and between the same parallel lines AB and FC (as shown in the adjoining figure).

We want to prove that area of $\| \mathrm{gm} \mathrm{ABCD}=$ area of rect. ABEF.


Since a rectangle is also a parallelogram, therefore,
area of $\| \mathrm{gm}$ ABCD = area of rect. ABEF (Theorem 13.2).
Hence, a parallelogram and a rectangle on the same base and between the same parallel lines are equal in area.

Corollary 2. Area of a parallelogram $=$ base $\times$ height .
Proof. By corollary 1, we have
area of parallelogram $\mathrm{ABCD}=$ area of rectangle ABEF
(see figure of corollary 1 )
Also area of rectangle $\mathrm{ABEF}=\mathrm{AB} \times \mathrm{BE}$
From (i) and (ii), we get
area of parallelogram $\mathrm{ABCD}=\mathrm{AB} \times \mathrm{BE}=$ base $\times$ height.
Hence, the area of a parallelogram $=$ base $\times$ height.
Corollary 3. Parallelograms with equal bases and between the same parallels are equal in area.
Proof. Let ABCD and EFGH be two parallelograms with equal bases i.e. $\mathrm{AB}=\mathrm{EF}$ and between the same parallel lines EB and HC.

From B, draw BM $\perp \mathrm{DC}$ and from E , draw $\mathrm{EN} \perp \mathrm{HG}$, then $\mathrm{BM}=\mathrm{EN}$
$(\because$ EBMN is a rectangle (why?)), so opp. sides are equal i.e. $\mathrm{BM}=\mathrm{EN}$ )
By corollary 2,

area of parallelogram $\mathrm{ABCD}=$ base $\times$ height $=\mathrm{AB} \times \mathrm{BM}$

$$
\begin{aligned}
& =\mathrm{EF} \times \mathrm{EN} \\
& =\text { area of parallelogram EFGH. }
\end{aligned} \quad(\because \mathrm{AB}=\mathrm{EF} \text { and } \mathrm{BM}=\mathrm{EN})
$$

Hence, parallelograms with equal bases and between the same parallel lines are equal in area.

- Converse of theorem 13.2

The converse of the above theorem 13.2 is also true. In fact, we have:
Theorem 13.3
Parallelograms on the same base and having equal areas lie between same parallel lines.
Given. Two parallelograms ABCD and ABEF on the same base $A B$ and area of $\| \mathrm{gm} A B C D=$ area of $\|$ gm ABEF.

To prove. AB \| FC.
Construction. From D, draw $\mathrm{DM} \perp \mathrm{AB}$ and from E , draw
 $\mathrm{EN} \perp \mathrm{AB}$.

Proof.

| Statements | Reasons |
| :--- | :--- |
| 1. Area of $\\| \mathrm{gm} \mathrm{ABCD}=\mathrm{AB} \times \mathrm{DM}$ | 1. Area of a $\\| \mathrm{gm}=$ base $\times$ height. |
| 2. Area of $\\| \mathrm{gm} \mathrm{ABEF}=\mathrm{AB} \times \mathrm{EN}$ | 2. Area of a $\\| \mathrm{gm}=$ base $\times$ height. |
| 3. $\mathrm{AB} \times \mathrm{DM}=\mathrm{AB} \times \mathrm{EN}$ <br> $\Rightarrow \mathrm{DM}=\mathrm{EN}$ | 3. Area of $\\| \mathrm{gm} \mathrm{ABCD}=$ area of $\\| \mathrm{gm} \mathrm{ABEF}$ (given) |$|$| 4. DM and EN are both perpendicular to the same |
| :--- |
| line AB. |

Corollary 1. Parallelograms on equal bases and having equal areas have equal corresponding altitudes.
(In the above proof of the theorem, we obtained $\mathrm{DM}=\mathrm{EN}$, so $\|$ gm ABCD and $\|$ gm ABEF have equal corresponding altitudes.)

Corollary 2. Parallelograms on equal bases and having equal areas lie between same parallel lines.

Theorem 13.4
Area of a triangle is half that of a parallelogram on the same base and between the same parallel lines.

Given. A triangle $A B E$ and a parallelogram $A B C D$ on the same base $A B$ and between the same parallel lines $A B$ and DC.

To prove. Area of $\triangle \mathrm{ABE}=\frac{1}{2}$ area of $\|$ gm ABCD .
Construction. Through B, draw BF $\|$ AE to meet DC
 (produced) at F.

Proof.

| Statements | Reasons |
| :---: | :---: |
| 1. ABFE is a parallelogram | 1. By construction. |
| 2. Area of $\triangle \mathrm{ABE}=$ $\frac{1}{2}$ area of $\\|$ gm ABFE | 2. BE is a diagonal of $\\|$ gm ABFE, and a diagonal divides it into two triangles of equal areas. |
| 3. Area of $\\|$ gm ABCD = area of \|| gm ABFE | 3. Parallelograms on the same base and between the same parallels are equal in area. |
| 4. Area of $\triangle \mathrm{ABE}=$ $\frac{1}{2}$ area of $\\|$ gm ABCD | 4. From 2 and 3. |

Corollary 1. Area of a triangle $=\frac{1}{2}$ base $\times$ height
Proof. Let ABC be a triangle with base BC and $\mathrm{AN} \perp \mathrm{BC}$, then height of $\triangle \mathrm{ABC}=\mathrm{AN}$. Through A and C draw lines parallel to BC and BA to meet at D , then ABCD is a parallelogram.

Thus, $\triangle A B C$ and parallelogram $A B C D$ are on the same base $B C$ and between same parallel lines $B C$ and $A D$.

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{ABC} & =\frac{1}{2} \text { area of parallelogram } \mathrm{ABCD} \\
& =\frac{1}{2} \mathrm{BC} \times \mathrm{AN} \\
& =\frac{1}{2} \text { base } \times \text { height. }
\end{aligned}
$$


(Theorem 13.4)

$$
=\frac{1}{2} \mathrm{BC} \times \mathrm{AN} \quad \quad \text { (area of } \| \text { gm }=\text { base } \times \text { height) }
$$

Corollary 2. A median of a triangle divides it into two triangles of equal areas.
Proof. Let ABC be any triangle and AD be one of its medians (shown in the adjoining figure).

We need to show that area of $\triangle \mathrm{ABD}=$ area of $\triangle \mathrm{ACD}$.
From A , draw $\mathrm{AN} \perp \mathrm{BC}$.
Now, area $(\triangle \mathrm{ABD})=\frac{1}{2}$ base $\times$ corresponding height

$$
=\frac{1}{2} \mathrm{BD} \times \mathrm{AN}=\frac{1}{2} \mathrm{DC} \times \mathrm{AN}
$$

$(\because \mathrm{D}$ is mid-point of BC , so $\mathrm{BD}=\mathrm{DC})$
$=$ area of $\triangle \mathrm{ACD}$.


Corollary 3. Area of a trapezium $=\frac{1}{2}$ (sum of parallel sides) $\times$ height .
Proof. Let $A B C D$ be a trapezium in which $A B \| D C$. Join $A C$. From $C$, draw $C N \perp A B$ and from $A$, draw $A M \perp C D$ (produced).

Then

$$
\begin{aligned}
\mathrm{CN}=\mathrm{AM} & =\text { height of trapezium } \\
& =h(\text { say })
\end{aligned}
$$



Area of trapezium $\mathrm{ABCD}=$ area of $\triangle \mathrm{ABC}+$ area of $\triangle \mathrm{ACD})$

$$
=\frac{1}{2} \mathrm{AB} \times \mathrm{CN}+\frac{1}{2} \mathrm{DC} \times \mathrm{AM}
$$

$$
\begin{aligned}
& =\frac{1}{2}(\mathrm{AB} \times h+\mathrm{DC} \times h)=\frac{1}{2}(\mathrm{AB}+\mathrm{DC}) \times h \\
& =\frac{1}{2}(\text { sum of parallel sides }) \times \text { height }
\end{aligned}
$$

Theorem 13.5
Triangles on the same base (or equal bases) and between the same parallel lines are equal in area.

Given. Two triangles ABC and BCD on the same BC and between the same parallel lines BC and $l$.

To prove. Area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{BCD}$.
Construction. Through C, draw CE || BA and $\mathrm{CF} \| \mathrm{BD}$ to meet line $l$ at E and F respectively.

Proof.


| Statements | Reasons |
| :--- | :--- |
| 1. ABCE is a parallelogram. | 1. $\mathrm{BC} \\| \mathrm{AE}$ (given), $\mathrm{CE} \\| \mathrm{BA}$ (Const.) |

## - Converse of theorem 13.5

The converse of the above theorem 13.5 is also true. In fact, we have:
Theorem 13.6
Triangles on the same base (or equal bases) and having equal areas lie between the same parallel lines.

Given. Two triangles $A B C$ and $A B D$ on the same base $A B$, and area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{ABD}$.

To prove. $C D \| A B$.
Construction. From $C$ and $D$, draw perpendiculars CM and DN on AB respectively.

Proof.


## Statements

| 1. Area of $\triangle \mathrm{ABC}=\frac{1}{2} \mathrm{AB} \times \mathrm{CM}$ | 1. Area of a triangle $=\frac{1}{2}$ base $\times$ height. |
| :--- | :--- |
| 2. Area of $\triangle \mathrm{ABD}=\frac{1}{2} \mathrm{AB} \times \mathrm{DN}$ | 2. Same as above. |
| 3. $\frac{1}{2} \mathrm{AB} \times \mathrm{CM}=\frac{1}{2} \mathrm{AB} \times \mathrm{DN}$ | 3. Area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{ABD}$ (given) |
| 4. $\mathrm{CM}=\mathrm{DN}$ | 4. From 3, cancelling $\frac{1}{2} \mathrm{AB}$. |


| 5. $\mathrm{CM} \\| \mathrm{DN}$ | 5. CM and DN are both perpendiculars to <br> the same line AB. |
| :--- | :--- |
| 6. CMND is a parallelogram. | 6. Two sides CM and DN of quad. CMND <br> are equal and parallel. |
| 7. $\mathrm{CD} \\| \mathrm{MN}$ i.e. $\mathrm{CD} \\| \mathrm{AB}$ | 7. By definition of a $\\| \mathrm{gm}$. |

Corollary 1. Triangles on the same base (or equal bases) and having equal areas have equal corresponding altitudes.
(In the above proof of the theorem, we obtained $C M=D N$. So, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABD}$ have equal corresponding altitudes.)

Corollary 2. If two triangles lie between the same parallels (i.e. have equal altitudes), then the ratio of their areas equals the ratio of their bases.

Corollary 3. If two triangles have equal bases, then the ratio of their areas equals the ratio of their altitudes.

## Illustrative Examples

Example 1. $P$ and $Q$ are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$. Show that area of $\triangle A P B=$ area of $\triangle B Q C$.

Solution. Given a parallelogram $A B C D$, and $P$ and $Q$ are points lying on the sides DC and AD respectively as shown in the adjoining figure.

As $\triangle \mathrm{APB}$ and $\| \mathrm{gm} \mathrm{ABCD}$ are on the same base and between the same parallels $A B$ and $D C$,


$$
\begin{equation*}
\text { area of } \triangle \mathrm{APB}=\frac{1}{2} \text { area of } \| \mathrm{gm} \mathrm{ABCD} \tag{i}
\end{equation*}
$$

Also, as $\triangle B Q C$ and $\| g m A B C D$ are on the same $B C$ and between the same parallels AD and BC,

$$
\begin{equation*}
\text { area of } \triangle \mathrm{BQC}=\frac{1}{2} \text { area of } \| \mathrm{gm} \mathrm{ABCD} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get
area of $\triangle \mathrm{APB}=$ area of $\triangle \mathrm{BQC}$.
Example 2. In the adjoining figure, $A B C D$ is a rectangle with sides $A B=8 \mathrm{~cm}$ and $A D=5 \mathrm{~cm}$. Compute
(i) area of parallelogram $A B E F$
(ii) area of $\triangle E F G$.

Solution. (i) Area of $\|$ gm ABEF

$=$ area of rectangle ABCD
(on the same base $A B$ and between the same parallels $A B$ and $D E$ ) $=(8 \times 5) \mathrm{cm}^{2}=40 \mathrm{~cm}^{2}$.
(ii) Area of $\triangle \mathrm{EFG}=\frac{1}{2}$ area of $\| \mathrm{gm}$ ABEF
(on the same base FE and between the same parallels FE and AG)

$$
=\left(\frac{1}{2} \times 40\right) \mathrm{cm}^{2}=20 \mathrm{~cm}^{2}
$$

Example 3. A point $E$ is taken on the side $B C$ of a parallelogram $A B C D . A E$ and $D C$ are produced to meet at F. Prove that
area of $\triangle A D F=$ area of quad. $A B F C$.
Solution. Join AC and BF.
As triangles ACF and BCF have same base CF and are between the same parallels AB and $\mathrm{CF}(\because \mathrm{AB} \| \mathrm{DC})$, area of $\triangle \mathrm{ACF}=$ area of $\triangle \mathrm{BCF}$
As diagonal AC divides || gm ABCD into two triangles of equal area,


$$
\begin{equation*}
\text { area of } \triangle \mathrm{DAC}=\text { area of } \triangle \mathrm{ABC} \tag{ii}
\end{equation*}
$$

On adding (i) and (ii), we get
area of $\triangle \mathrm{ACF}+$ area of $\triangle \mathrm{DAC}=$ area of $\triangle \mathrm{BCF}+$ area of $\triangle \mathrm{ABC}$
$\Rightarrow$ area of $\triangle \mathrm{ADF}=$ area of quad. ABFC .
Example 4. The diagonals of a parallelogram $A B C D$ intersect at $O$. A straight line through $O$ meets $A B$ at $P$ and the opposite side $C D$ at $Q$. Prove that area of quad. $A P Q D=\frac{1}{2}$ area of $\| g m A B C D$.


## Proof.

| Statements | Reasons |
| :--- | :--- |
| 1. Area of $\triangle \mathrm{ACD}=\frac{1}{2}$ area of $\\| \mathrm{gm} \mathrm{ABCD}$ | 1. Diagonal divides a $\\|$ gm into two $\Delta \mathrm{s}$ of <br> equal area. |
| In $\triangle \mathrm{OAP}$ and $\triangle \mathrm{OCQ}$ |  |
| 2. $\angle \mathrm{OAP}=\angle \mathrm{OCQ}$ | 2. Alt. $\angle \mathrm{s}$. |
| 3. $\angle \mathrm{AOP}=\angle \mathrm{COQ}$ | 3. Vert. opp. $\angle \mathrm{s}$. |
| 4. $\mathrm{AO}=\mathrm{OC}$ | 4. Diagonals bisect each other. |
| 5. $\Delta \mathrm{OAP} \cong \Delta \mathrm{OCQ}$ | 5. ASA rule of congruency. |
| 6. Area of $\triangle \mathrm{OAP}=$ area of $\Delta \mathrm{OCQ}$ | 6. Congruence area axiom. |
| 7. Area of $\triangle \mathrm{OAP}+$ area of quad. AOQD |  |
| $=$ area of $\triangle \mathrm{OCQ}+$ area of quad. AOQD | 7. Adding same area on both sides. |
| 8. Area of quad. $\mathrm{APQD}=$ area of $\triangle \mathrm{ACD}$ | 8. Addition area axiom. |
| 9. Area of quad. APQD | 9. From 8 and 1. |

Example 5. $A B C D$ is a trapezium with $A B \| D C$, and diagonals $A C$ and $B D$ meet at $O$. Prove that area of $\triangle D A O=$ area of $\triangle O B C$.


Proof.

| Statements | Reasons |
| :--- | :--- |
| 1. $\mathrm{AB} \\| \mathrm{DC}$ | 1. Given. |
| 2. Area of $\triangle \mathrm{ABD}=$ area of $\triangle \mathrm{ABC}$ | 2. $\Delta$ s on the same base AB and between <br> the same parallels AB and CD are <br> equal in area. |
| 3. Area of $\triangle \mathrm{DAO}+$ area of $\triangle \mathrm{OAB}$ <br> $=$ area of $\triangle \mathrm{OBC}+$ area of $\triangle \mathrm{OAB}$ | 3. Addition area axiom. <br> 4. Area of $\triangle \mathrm{DAO}=$ area of $\triangle \mathrm{OBC}$ <br> Q.E.D.4. Subtracting same area from both <br> sides. |

Example 6. The diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at $O$. If $O B=O D$, prove that the triangles $A B C$ and $A C D$ are equal in area.


## Proof.

| Statements | Reasons |
| :--- | :--- |
| 1. AO is median of $\triangle \mathrm{ABD}$ | 1. $\mathrm{OB}=\mathrm{OD}$ (given). |
| 2. Area of $\triangle \mathrm{OAB}=$ area of $\triangle \mathrm{OAD}$ | 2. Median divides a $\Delta$ into two $\Delta \mathrm{s}$ of <br> equal area. |
| 3. CO is median of $\Delta \mathrm{CBD}$ | 3. OB = OD (given) |
| 4. Area of $\triangle \mathrm{OBC}=$ area of $\Delta \mathrm{OCD}$ | 4. Median divides a $\Delta$ into two $\Delta \mathrm{s}$ of <br> equal area. |
| 5. Area of $\triangle \mathrm{OAB}+$ area of $\triangle \mathrm{OBC}$ <br> = area of $\triangle \mathrm{OAD}+$ area of $\triangle \mathrm{OCD}$ | 5. Adding 2 and 4 |
| 6. Area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{ACD}$ <br> Q.E.D. | 6. Addition area axiom. |

Example 7. In quadrilateral $A B C D, M$ is mid-point of the diagonal $A C$. Prove that area of quad. $A B M D=$ area of quad. DMBC.

## Proof.



| Statements | Reasons |
| :--- | :--- |
| 1. BM is median of $\triangle \mathrm{BCA}$ | 1. M is mid-point of AC (given). |
| 2. Area of $\triangle \mathrm{ABM}=$ area of $\triangle \mathrm{MBC}$ | 2. Median divides a $\Delta$ into two $\Delta \mathrm{s}$ of <br> equal area. |
| 3. DM is median of $\triangle \mathrm{DAC}$ | 3. M is mid-point of AC (given). |
| 4. Area of $\triangle \mathrm{DAM}=$ area of $\triangle \mathrm{DMC}$ | 4. Median divides a triangle into two <br> $\Delta$ s of equal area. |
| 5. Area of $\triangle \mathrm{ABM}+$ area of $\triangle \mathrm{DAM}=$ area of <br> $\Delta \mathrm{MBC}+$ area of $\triangle \mathrm{DMC}$ | 5. Adding 2 and 4. |
| 6. Area of quad. $\mathrm{ABMD}=$ area of quad. DMBC <br> Q.E.D. | 6. Addition area axiom. |

Example 8. In the adjoining figure, $D$ is mid-point of $A B$ and $P$ is any point on side $B C$ of $\triangle A B C$. If $C Q \| P D$ meets $A B$ in $Q$, then prove that area of $\triangle B P Q=\frac{1}{2}$ area of $\triangle A B C$.

## Solution. Join CD.

Triangles DPQ and DPC are on the same base PD and between same parallels CQ and PD ,

$\therefore \quad$ area of $\triangle \mathrm{PDQ}=$ area of $\triangle \mathrm{DPC}$
As $D$ is mid-point of $A B$, so $C D$ is a median of $\triangle A B C$. Since a median divides a triangle into two triangles of equal area,

$$
\begin{aligned}
& \quad \text { area of } \triangle \mathrm{BCD}=\frac{1}{2} \text { area of } \triangle \mathrm{ABC} \\
& \Rightarrow \quad \text { area of } \triangle \mathrm{BPD}+\text { area of } \triangle \mathrm{DPC}=\frac{1}{2} \text { area of } \triangle \mathrm{ABC} \\
& \Rightarrow \quad \text { area of } \triangle \mathrm{BPD}+\text { area of } \triangle \mathrm{DPQ}=\frac{1}{2} \text { area of } \triangle \mathrm{ABC} \\
& \Rightarrow \quad \text { area of } \triangle \mathrm{BPQ}=\frac{1}{2} \text { area of } \triangle \mathrm{ABC} .
\end{aligned}
$$

Example 9. In the adjoining figure, $A B C D E$ is any pentagon. BP drawn parallel to $A C$ meets $D C$ produced at $P$ and $E Q$ drawn parallel to $A D$ meets $C D$ produced at $Q$. Prove that area of $A B C D E=$ area of $\triangle A P Q$.

Solution. $\triangle \mathrm{PCA}$ and $\triangle \mathrm{BCA}$ are on the same base CA and between same parallels $\mathrm{BP} \| \mathrm{AC}$.
$\therefore \quad$ area of $\triangle \mathrm{BCA}=$ area of $\triangle \mathrm{PCA}$

$\Delta \mathrm{EAD}$ and $\triangle \mathrm{QAD}$ are on the same base AD and between same parallels $\mathrm{EQ} \| \mathrm{AD}$,
$\therefore \quad$ area of $\triangle \mathrm{EAD}=$ area of $\triangle \mathrm{QAD}$
Also, area of $\triangle \mathrm{ACD}=$ area of $\triangle \mathrm{ACD}$
On adding (i), (iii) and (ii), we get

$$
\begin{array}{r}
\text { area of } \triangle \mathrm{BCA}+\text { area of } \triangle \mathrm{ACD}+\text { area of } \triangle \mathrm{EAD} \\
\quad=\text { area of } \triangle \mathrm{PCA}+\text { area of } \triangle \mathrm{ACD}+\text { area of } \Delta \mathrm{QAD}
\end{array}
$$

$\Rightarrow$ area of $\mathrm{ABCDE}=$ area of $\triangle \mathrm{APQ}$.
Example 10. The diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at $O$ in such a way that area of $\triangle O A D=$ area of $\triangle O B C$. Prove that $A B C D$ is a trapezium.

Solution. Draw $\mathrm{DM} \perp \mathrm{AB}$ and $\mathrm{CN} \perp \mathrm{AB}$.
As DM and CN are both perpendiculars to AB , therefore, DM \| CN.

Given area of $\triangle \mathrm{OAD}=$ area of $\triangle \mathrm{OBC}$
$\Rightarrow$ area of $\triangle \mathrm{OAD}+$ area of $\triangle \mathrm{OAB}$
$=$ area of $\triangle \mathrm{OBC}+$ area of $\Delta \mathrm{OAB}$

(adding same area on both sides)
$\Rightarrow$ area of $\triangle \mathrm{ABD}=$ area of $\triangle \mathrm{ABC}$
$\Rightarrow \quad \frac{1}{2} \mathrm{AB} \times \mathrm{DM}=\frac{1}{2} \mathrm{AB} \times \mathrm{CN}$
$\Rightarrow \quad \mathrm{DM}=\mathrm{CN}$.
Thus $\mathrm{DM} \| \mathrm{CN}$ and $\mathrm{DM}=\mathrm{CN}$, therefore, DMNC is a parallelogram
$\Rightarrow \quad \mathrm{DC} \| \mathrm{MN}$ i.e. $\mathrm{DC} \| \mathrm{AB}$.
Hence, $A B C D$ is a trapezium.

Example 11. Prove that area of a rhombus $=\frac{1}{2} \times$ product of diagonals.
Solution. Let ABCD be a rhombus, and let its diagonals intersect at O .
Since the diagonals of a rhombus cut at right angles, $\mathrm{OB} \perp \mathrm{AC}$ and $\mathrm{OD} \perp \mathrm{AC}$.
As area of a triangle $=\frac{1}{2}$ base $\times$ height,
$\therefore$ area of $\triangle \mathrm{ABC}=\frac{1}{2} \mathrm{AC} \times \mathrm{OB}$
and area of $\triangle \mathrm{ACD}=\frac{1}{2} \mathrm{AC} \times \mathrm{OD}$
On adding (i) and (ii), we get

area of $\triangle \mathrm{ABC}+$ area of $\triangle \mathrm{ACD}=\frac{1}{2} \mathrm{AC} \times \mathrm{OB}+\frac{1}{2} \mathrm{AC} \times \mathrm{OD}$
$\Rightarrow$ area of rhombus $\mathrm{ABCD}=\frac{1}{2} \mathrm{AC} \times(\mathrm{OB}+\mathrm{OD})$
$=\frac{1}{2} \mathrm{AC} \times \mathrm{BD}$
$=\frac{1}{2} \times$ product of diagonals.
Example 12. $A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at $X$ and $B C$ at Y. Prove that: area of $\triangle A D X=$ area of $\triangle A C Y$.

## Solution. Join CX.

As triangles ADX and ACX have same base $A X$ and are between the same parallels ( $\mathrm{AB} \| \mathrm{DC}$ given, so, $\mathrm{AX} \| \mathrm{DC}$ ),
$\therefore \quad$ area of $\triangle \mathrm{ADX}=$ area of $\triangle \mathrm{ACX}$
As triangles ACY and ACX have same base AC and are
 between the same parallels ( $X Y \| A C$ given),
$\therefore \quad$ area of $\triangle \mathrm{ACY}=$ area of $\triangle \mathrm{ACX}$
From (i) and (ii), we get
area of $\triangle \mathrm{ADX}=$ area of $\triangle \mathrm{ACY}$.
Example 13. $X Y$ is a line parallel to side $B C$ of a triangle $A B C$. If $B E \| C A$ and $F C \| A B$ meet $X Y$ at $E$ and $F$ respectively, show that area of $\triangle A B E=$ area of $\triangle A C F$.

Solution. As $\triangle \mathrm{ABE}$ and $\| \mathrm{gm}$ EBCY have the same base BE and are between the same parallels $\mathrm{BE} \| \mathrm{CA}$ (given),

$$
\begin{equation*}
\therefore \quad \text { area of } \triangle \mathrm{ABE}=\frac{1}{2} \text { area of } \| \text { gm EBCY } \tag{i}
\end{equation*}
$$

As $\triangle \mathrm{ACF}$ and $\|$ gm XBCF have the same base CF and are between the same parallels FC \| AB (given),

$$
\begin{equation*}
\therefore \quad \text { area of } \triangle \mathrm{ACF}=\frac{1}{2} \text { area of } \| \text { gm XBCF } \tag{ii}
\end{equation*}
$$



But || gm EBCY and || gm XBCF have the same base BC and are between the same parallels ( $X Y \| B C$ given),
$\therefore \quad$ area of $\|$ gm EBCY $=$ area of $\|$ gm XBCF
$\Rightarrow \quad \frac{1}{2}$ area of $\|$ gm EBCY $=\frac{1}{2}$ area of $\|$ gm XBCF
$\Rightarrow \quad$ area of $\triangle \mathrm{ABE}=$ area of $\triangle \mathrm{ACF} \quad$ (using (i) and (ii))

Example 14. In the adjoining figure, the side $A B$ of a parallelogram $A B C D$ is produced to any point $P$. A line through $A$ and parallel to $C P$ meets $C B$ produced at $Q$ and then parallelogram $P B Q R$ is completed. Show that
area of $\| g m A B C D=$ area of $\| g m P B Q R$.
Solution. Join AC and PQ.
As AC is a diagonal of $\|$ gm ABCD,

$$
\begin{equation*}
\text { area of } \| \text { gm } A B C D=2 \text { area of } \triangle A B C \tag{i}
\end{equation*}
$$

As PQ is a diagonal of $\| \mathrm{gm}$ PBQR,

$$
\begin{equation*}
\text { area of } \| \text { gm } \mathrm{PBQR}=2 \text { area of } \triangle \mathrm{PBQ} \tag{ii}
\end{equation*}
$$



Now, triangles CAQ and PAQ have the same base $A Q$ and are between the same parallels $A Q \| C P$,

$$
\begin{array}{rlrl}
\therefore & \text { area of } \Delta \mathrm{CAQ} & =\text { area of } \triangle \mathrm{PAQ} \\
\Rightarrow & \text { area of } \triangle \mathrm{CAQ} \text { - area of } \triangle \mathrm{BAQ} & =\text { area of } \triangle \mathrm{PAQ}-\text { area of } \triangle \mathrm{BAQ} \\
& \text { (subtracting same area from both sides) }
\end{array}
$$


$\Rightarrow \quad$ area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{PBQ}$
$\Rightarrow \quad 2$ area of $\triangle \mathrm{ABC}=2$ area of $\triangle \mathrm{PBQ}$
$\Rightarrow \quad$ area of $\| \mathrm{gm} \mathrm{ABCD}=$ area of $\|$ gm PBQR
Example 15. In the adjoining figure, $P Q R S$ and $P X Y Z$ are two parallelograms of equal area. Prove that $S X$ is parallel to $Y R$.

Solution. Join XR, SY.
Given area of $\|$ gm PQSR $=$ area of $\|$ gm PXYZ.
Subtract area of $\|$ gm PSOX from both sides.

$\therefore \quad$ Area of $\|$ gm XORQ $=$ area of $\|$ gm SZYO
$\Rightarrow$ area of $\Delta \mathrm{XOR}=$ area of $\Delta \mathrm{SYO}$
(because diagonal divides a $\|$ gm into two equal areas)
Adding area of $\triangle O Y R$ to both sides, we get
area of $\Delta X Y R=$ area of $\Delta S Y R$.
Also the $\Delta s$ XYR and SYR have the same base YR, therefore, these lie between the same parallels
$\Rightarrow S X$ is parallel to YR.
Example 16. $E$ and $F$ are mid-points of the sides $A B$ and $A C$ respectively of a triangle $A B C$. If $B F$ and $C E$ meet at $O$, prove that area of $\triangle O B C=$ area of quad. $A E O F$.

Solution. Join EF.
As E and F are mid-points of AB and AC respectively, $\mathrm{EF} \| \mathrm{BC}$.
$\therefore$ Area of $\triangle \mathrm{EBC}=$ area of $\triangle \mathrm{FBC}$.
(Triangles on the same base BC and between same parallels)
$\Rightarrow$ area of $\triangle \mathrm{EBC}$ - area of $\triangle \mathrm{OBC}$
$=$ area of $\triangle \mathrm{FBC}-$ area of $\triangle \mathrm{OBC}$

$\Rightarrow$ area of $\triangle \mathrm{BOE}=$ area of $\Delta \mathrm{COF}$
As $F$ is mid-point of $A C$, area of $\triangle F B C=$ area of $\triangle A B F$
( $\because$ A median divides a triangle into two triangles of equal area).
$\Rightarrow$ area of $\triangle \mathrm{FBC}-$ area of $\triangle \mathrm{COF}=$ area of $\triangle \mathrm{ABF}-$ area of $\triangle \mathrm{BOE}$
[using ( $i$ )]
$\Rightarrow$ area of $\triangle \mathrm{OBC}=$ area of quad. AEOF
(from figure)

Example 17. In the adjoining figure, $A B C D, D C F E$ and $A B F E$ are parallelograms. Show that area of $\triangle A D E=$ area of $\triangle B C F$.

Solution. As ABCD is a parallelogram,

$$
\mathrm{AD}=\mathrm{BC} \quad(\text { opp. sides of } \mathrm{a} \| \mathrm{gm})
$$

Similarly,

$$
\mathrm{DE}=\mathrm{CF} \text { and } \mathrm{AE}=\mathrm{BF}
$$



In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BCF}$,

$$
\begin{array}{rlrl} 
& & \mathrm{AD} & =\mathrm{BC}, \mathrm{DE}=\mathrm{CF} \text { and } \mathrm{AE}=\mathrm{BF} \\
\therefore & \triangle \mathrm{ADE} & \cong \Delta \mathrm{BCF} \\
\therefore & \text { area of } \triangle \mathrm{ADE} & =\text { area of } \triangle \mathrm{BCF} & \text { (by SSS rule of congruency) }
\end{array}
$$

Example 18. Triangles $A B C$ and $D B C$ are on the same base $B C$ with $A, D$ on opposite sides of $B C$.

If area of $\triangle A B C=$ area of $\triangle D B C$, prove that $B C$ bisects $A D$.

Solution. Let $B C$ and $A D$ intersect at $O$.
Draw $\mathrm{AM} \perp \mathrm{BC}$ and $\mathrm{DN} \perp \mathrm{BC}$.
Given area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{DBC}$
$\Rightarrow \quad \frac{1}{2} \mathrm{BC} \times \mathrm{AM}=\frac{1}{2} \mathrm{BC} \times \mathrm{DN}$
$\Rightarrow \quad \mathrm{AM}=\mathrm{DN}$.
In $\triangle \mathrm{AMO}$ and $\triangle \mathrm{DNO}$,

$$
\begin{aligned}
& \angle \mathrm{AOM}=\angle \mathrm{DON} \\
& \angle \mathrm{AMO}=\angle \mathrm{DNO}
\end{aligned}
$$

$\therefore \quad \triangle \mathrm{AMO} \cong \Delta \mathrm{DNO}$

(vert. opp. $\angle$ s) (each angle $\left.=90^{\circ}\right)$

$$
\mathrm{AM}=\mathrm{DN}
$$

(proved above) (AAS rule of congruency)
$\therefore \quad \mathrm{AO}=\mathrm{DO}$
(c.p.c.t.)

Hence, BC bisects AD.
Example 19. In the adjoining figure, $A B C D$ is a parallelogram and $B C$ is produced to a point $Q$ such that $C Q=A D$. If $A Q$ intersects $D C$ at $P$, show that area of $\triangle B P C=$ area of $\triangle D P Q$.

Solution. Join AC.
As triangles BPC and APC have same base PC and are between the same parallels ( $\mathrm{AB} \| \mathrm{DC}$ i.e. $\mathrm{AB} \| \mathrm{PC}$ ),
$\therefore \quad$ area of $\triangle \mathrm{BPC}=$ area of $\triangle \mathrm{APC}$
In quad. $A D Q C, A D \| C Q$
$(\because \mathrm{AD} \| \mathrm{BC}$, opp. sides of $\|$ gm ABCD$)$
$\mathrm{AD}=\mathrm{CQ} \quad$ (given)
(given)
$\therefore$ ADQC is a parallelogram, so its diagonals AQ and DC bisect each other i.e. $\mathrm{DP}=\mathrm{PC}$ and $\mathrm{AP}=\mathrm{PQ}$.

In $\triangle \mathrm{APC}$ and $\triangle \mathrm{QPD}$,

$$
\begin{aligned}
\mathrm{PC} & =\mathrm{DP} \\
\mathrm{AP} & =\mathrm{PQ} \\
\angle \mathrm{APC} & =\angle \mathrm{QPD} \quad \text { (vert. opp. } \angle \mathrm{s}) \\
\triangle \mathrm{APC} & \cong \Delta \mathrm{QPD} \\
\therefore \quad \text { area of } \triangle \mathrm{APC} & =\text { area of } \triangle \mathrm{DPQ} \quad \ldots(i i)
\end{aligned}
$$



From (i) and (ii), we get area of $\triangle \mathrm{BPC}=$ area of $\triangle \mathrm{DPQ}$.

Example 20. In the adjoining figure, $A B C D$ is a parallelogram. $P$ is mid-point of $A B$ and $C P$ meets the diagonal $B D$ at $Q$. If area of $\triangle P B Q=10 \mathrm{~cm}^{2}$, calculate
(i) $P Q$ : $Q C$
(ii) area of $\triangle P B C$

(iii) area of parallelogram $A B C D$.

Solution. (i) Since $P$ is mid-point of $A B, P B=\frac{1}{2} A B$.

$$
\begin{equation*}
\text { But } \mathrm{AB}=\mathrm{DC}(\because \mathrm{ABCD} \text { is a } \| \mathrm{gm}) \Rightarrow \mathrm{PB}=\frac{1}{2} \mathrm{DC} \tag{1}
\end{equation*}
$$

In $\triangle \mathrm{PBQ}$ and $\triangle \mathrm{CDQ}$,
$\angle \mathrm{PQB}=\angle \mathrm{DQC}$ (vert. opp. $\angle$ s) and $\angle \mathrm{PBQ}=\angle \mathrm{QDC}$
(alt. $\angle \mathrm{s}$ )
$\Rightarrow \quad \triangle \mathrm{PBQ} \sim \Delta \mathrm{CDQ}$
$\therefore \quad \frac{\mathrm{PQ}}{\mathrm{QC}}=\frac{\mathrm{PB}}{\mathrm{DC}}=\frac{1}{2}$ (using (1))
$\Rightarrow \quad \mathrm{PQ}: \mathrm{QC}=1: 2$.
(ii) $\mathrm{PQ}: \mathrm{QC}=1: 2 \Rightarrow \mathrm{PQ}: \mathrm{PC}=1: 3$

Since the bases $C P$, QP of $\Delta s$ PBC, PBQ lie along the same line, and these triangles have equal heights, therefore,

$$
\begin{equation*}
\frac{\text { area of } \triangle \mathrm{PBC}}{\text { area of } \triangle \mathrm{PBQ}}=\frac{\mathrm{PC}}{\mathrm{PQ}}=\frac{3}{1} \tag{2}
\end{equation*}
$$

$\Rightarrow \quad$ area of $\triangle \mathrm{PBC}=3 \times$ area of $\triangle \mathrm{PBQ}=(3 \times 10) \mathrm{cm}^{2}=30 \mathrm{~cm}^{2}$.
(iii) Area of $\triangle \mathrm{ABC}=2 \times$ area of $\triangle \mathrm{PBC}$

$$
\begin{aligned}
& (\because \text { median of a triangle divides it into two triangles of equal areas }) \\
= & (2 \times 30) \mathrm{cm}^{2}=60 \mathrm{~cm}^{2} .
\end{aligned}
$$

Area of $\| g m \mathrm{ABCD}=2 \times$ area of $\triangle \mathrm{ABC}$.
( $\because$ diagonal divides a $\|$ gm into two triangles of equal areas) $=(2 \times 60) \mathrm{cm}^{2}=120 \mathrm{~cm}^{2}$.

Example 21. $A B C$ is a triangle whose area is $50 \mathrm{~cm}^{2}$. E and $F$ are mid-points of the sides $A B$ and $A C$ respectively. Prove that EBCF is a trapezium. Also find its area.

Solution. Since E and F are mid-points of the sides AB and AC respectively,
$\mathrm{EF} \| \mathrm{BC}$ and $\mathrm{EF}=\frac{1}{2} \mathrm{BC}$.
As EF || $\mathrm{BC}, \mathrm{EBCF}$ is a trapezium.
From $A$, draw $A M \perp B C$.
Let AM meet EF at N.
Since EF $\| \mathrm{BC}, \angle \mathrm{ENA}=\angle \mathrm{BMN}$.
But $\angle \mathrm{BMN}=90^{\circ} \quad(\because \mathrm{AM} \perp \mathrm{BC})$

so $\angle \mathrm{ENA}=90^{\circ}$ i.e. $\mathrm{AN} \perp \mathrm{EF}$.
Also, as $E$ is mid-point of $A B$ and $E N \| B M, N$ is mid-point of $A M$.
Now, area of $\triangle \mathrm{AEF}=\frac{1}{2} \mathrm{EF} \times \mathrm{AN}=\frac{1}{2}\left(\frac{1}{2} \mathrm{BC} \times \frac{1}{2} \mathrm{AM}\right)$

$$
\begin{aligned}
& =\frac{1}{4}\left(\frac{1}{2} \mathrm{BC} \times \mathrm{AM}\right)=\frac{1}{4}(\text { area of } \triangle \mathrm{ABC}) \\
& =\frac{1}{4}\left(50 \mathrm{~cm}^{2}\right)=12 \cdot 5 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore$ Area of trapezium $\mathrm{EBCF}=$ area of $\triangle \mathrm{ABC}-$ area of $\triangle \mathrm{AEF}$

$$
=50 \mathrm{~cm}^{2}-12.5 \mathrm{~cm}^{2}=37.5 \mathrm{~cm}^{2}
$$

Example 22. Prove that the area of the quadrilateral formed by joining the mid-points of the adjacent sides of a quadrilateral is half the area of the given quadrilateral.

Given. A quadrilateral $A B C D$, and $P Q R S$ is the quadrilateral formed by joining mid-points of the sides $A B, B C, C D$ and $D A$ respectively.

To prove. Area of quad. $\mathrm{PQRS}=\frac{1}{2}$ area of quad. ABCD .
Construction. Join AC and AR.


Proof.

## Reasons

| Statements | Reasons |
| :---: | :---: |
| 1. Area of $\triangle \mathrm{ARD}=\frac{1}{2}$ area of $\triangle \mathrm{ACD}$ | 1. Median divides a triangle into two triangles of equal area. |
| 2. Area of $\triangle \mathrm{SRD}=\frac{1}{2}$ area of $\triangle \mathrm{ARD}$ | 2. Same as in 1. |
| 3. Area of $\triangle \mathrm{SRD}=\frac{1}{4}$ area of $\triangle \mathrm{ACD}$ | 3. From 1 and 2. |
| 4. Area of $\triangle \mathrm{PBQ}=\frac{1}{4}$ area of $\triangle \mathrm{ABC}$ | 4. As in 3. |
| $\begin{aligned} & \text { 5. Area of } \triangle \mathrm{SRD}+\text { area of } \triangle \mathrm{PBQ} \\ & \qquad=\frac{1}{4}(\text { area of } \triangle \mathrm{ACD}+\text { area of } \triangle \mathrm{ABC}) \end{aligned}$ | 5. Adding 3 and 4. |
| $\begin{aligned} & \text { 6. Area of } \triangle \mathrm{SRD}+\text { area of } \triangle \mathrm{PBQ} \\ & \qquad=\frac{1}{4} \text { area of quad. } \mathrm{ABCD} \end{aligned}$ | 6. Addition area axiom. |
| $\begin{aligned} & \text { 7. Area of } \triangle \mathrm{APS}+\text { area of } \triangle \mathrm{QCR} \\ & \qquad=\frac{1}{4} \text { area of quad. } \mathrm{ABCD} \end{aligned}$ | 7. Same as in 6. |
| 8. Area of $\triangle \mathrm{APS}+$ area of $\triangle \mathrm{PBQ}+$ area of $\triangle \mathrm{QCR}$ + area of $\triangle S R D=\frac{1}{2}$ area of quad. ABCD | 8. Adding 6 and 7. |
| 9. Area of $\triangle \mathrm{APS}+$ area of $\triangle \mathrm{PBQ}+$ area of $\triangle \mathrm{QCR}$ + area of $\triangle \mathrm{SRD}+$ area of quad. $\mathrm{PQRS}=$ area of quad. ABCD | 9. Addition area axiom. |
| 10. Area of quad. $\mathrm{PQRS}=$ $\frac{1}{2}$ area of quad. ABCD Q.E.D. | 10. Subtracting 8 from 9 . |

## Exercise 13

1. Prove that the line segment joining the mid-points of a pair of opposite sides of a parallelogram divides it into two equal parallelograms.
2. Prove that the diagonals of a parallelogram divide it into four triangles of equal area.
3. (a) In the figure (1) given below, AD is median of $\triangle \mathrm{ABC}$ and P is any point on AD . Prove that
(i) area of $\triangle \mathrm{PBD}=$ area of $\triangle \mathrm{PDC}$
(ii) area of $\triangle \mathrm{ABP}=$ area of $\triangle \mathrm{ACP}$.
(b) In the figure (2) given below, $\mathrm{DE} \| \mathrm{BC}$. Prove that
(i) area of $\triangle \mathrm{ACD}=$ area of $\triangle \mathrm{ABE}$
(ii) area of $\triangle \mathrm{OBD}=$ area of $\triangle \mathrm{OCE}$.

(1)

(2)

Hint: $(b)(i)$ Area of $\triangle \mathrm{DEC}=$ area of $\triangle \mathrm{DEB}$, add area of $\triangle \mathrm{ADE}$ to both sides.
4. (a) In the figure (1) given below, ABCD is a parallelogram and P is any point in BC . Prove that, area of $\triangle \mathrm{ABP}+$ area of $\triangle \mathrm{DPC}=$ area of $\triangle \mathrm{APD}$.
(b) In the figure (2) given below, $O$ is any point inside a parallelogram $A B C D$. Prove that
(i) area of $\triangle \mathrm{OAB}+$ area of $\Delta \mathrm{OCD}=\frac{1}{2}$ area of $\|$ gm ABCD .
(ii) area of $\triangle \mathrm{OBC}+$ area of $\Delta \mathrm{OAD}=\frac{1}{2}$ area of $\|$ gm ABCD .

(1)

(2)

Hint: (b) (i) Through O, draw a straight line parallel to AB.
5. If $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are mid-points of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively of a parallelogram ABCD , prove that area of quad. $\mathrm{EFGH}=\frac{1}{2}$ area of $\| \mathrm{gm} \mathrm{ABCD}$.
Hint: Join HF. $\mathrm{AH}=\frac{1}{2} \mathrm{AD}$ and $\mathrm{BF}=\frac{1}{2} \mathrm{BC} \Rightarrow \mathrm{AH}=\mathrm{BF}$ and $\mathrm{AH} \| \mathrm{BF}$, so ABFH is a \|gm. $\therefore$ Area of $\triangle \mathrm{EFH}=\frac{1}{2}$ area of $\| \mathrm{gm} \mathrm{ABFH}$.
6. (a) In the figure (1) given below, ABCD is a parallelogram. $\mathrm{P}, \mathrm{Q}$ are any two points on the sides AB and BC respectively. Prove that area of $\triangle C P D=$ area of $\triangle A Q D$.
(b) In the figure (2) given below, PQRS and ABRS are parallelograms and X is any point on the side BR. Show that area of $\triangle \mathrm{AXS}=\frac{1}{2}$ area of $\| \mathrm{gm}$ PQRS.

(1)

(2)

